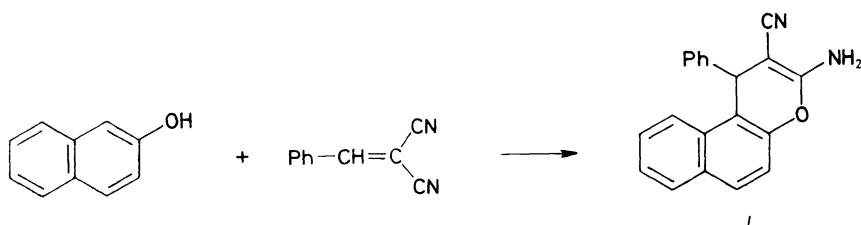


SYNTHESIS OF SOME NEW HETEROCYCLIC COMPOUNDS CONTAINING CHROMENE

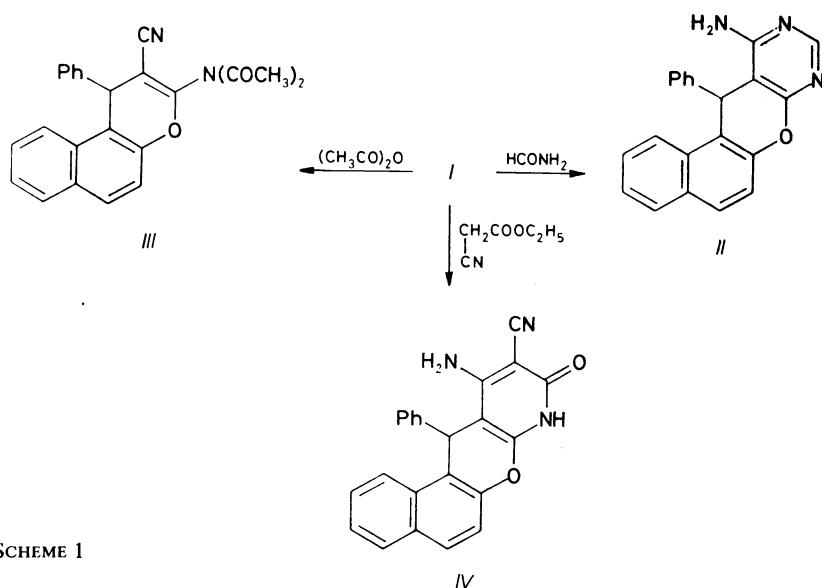
Ahmed A. ATALLA^a, Adel M. KAMAL EL-DEAN^{b,*} and Abd El-Fattah A. HARB^a

^a Chemistry Department, Faculty of Sciences of Qena, Assiut University, Assiut, Egypt

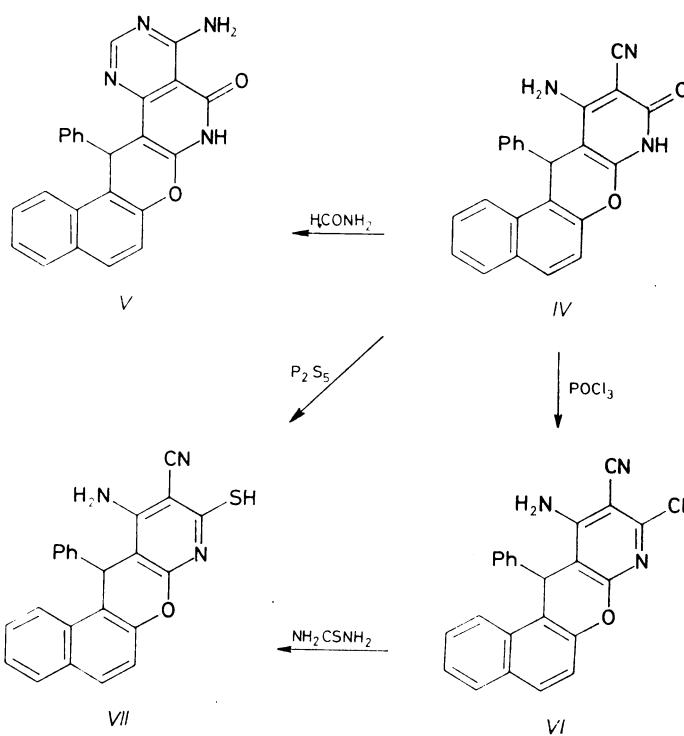

^b Chemistry Department, Faculty of Science, Assiut Univestiy, Assiut, Egypt

Received March 22, 1990

Accepted August 3, 1990

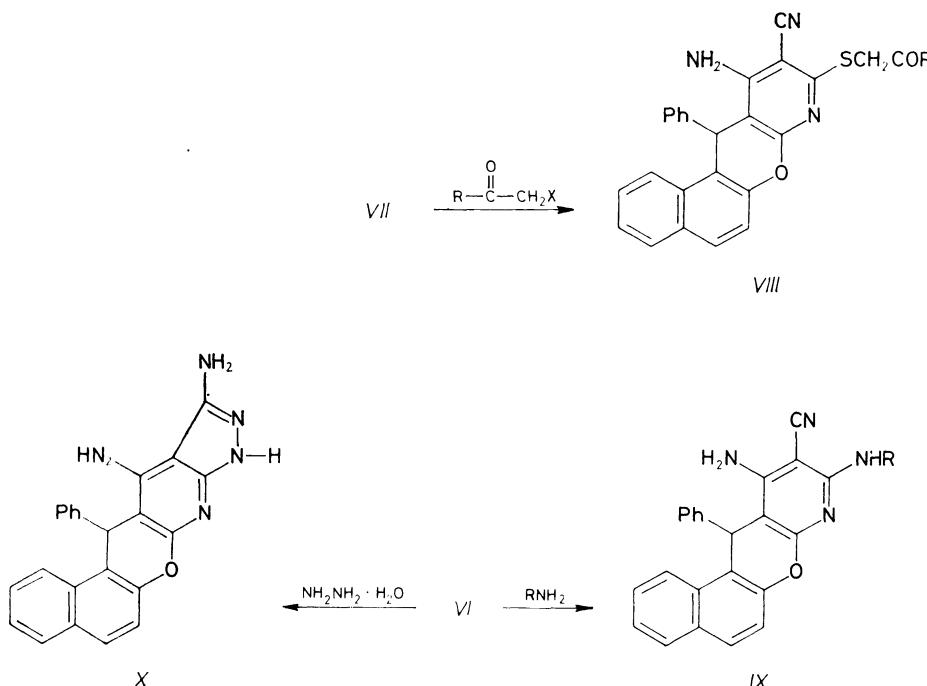

2-Amino-3-cyano-4H-phenyl-benzo[*f*]chromene (*I*) was reacted with formamide, acetic anhydride, and ethyl cyanoacetate to produce compounds (*II*–*IV*), respectively. Compound *IV* reacted with HCONH_2 , POCl_3 and P_2S_5 to produce corresponding pyrimidobenzochromene (*V*), chloropyridobenzochromene (*VI*) and mercaptopyridobenzochromene (*VII*). Compound *VII* reacted with α -halocompounds to produce corresponding S-alkylated derivatives (*VIIIa* to *VIIIc*), and compound (*VI*) reacted with different amines to produce corresponding alkyl amino-, or aryl aminopyridobenzochromene (*IXa*–*IXc*) but in using hydrazine hydrate, pyrazolopyridobenzochromene (*X*) was obtained.

The synthesis^{1–4} and biological^{5–7} activity of chromenes have attracted significant attention in recent years, but chromenes fused with other heterocyclic ring have virtually been ignored. In this investigation 2-amino-4H-phenyl-benzo[*f*]chromene-3-carbonitrile (ref.⁸) was used as a starting material to prepare other heterocyclic rings fused with chromene.



2-Amino-4H-phenyl-benzo[*f*]chromene-3-carbonitrile (*I*) was obtained from the reaction of arylidinemalononitrile and β -naphthol in the presence of a catalytic amount of piperidine (Scheme 1). When refluxed with formamide, 1-amino-12H-phenyl-pyrimido[4,5-*b*]benzo[*f*]chromene (*II*) was produced. When compound *I* was refluxed with acetic anhydride, 1-diacetylamino-4H-phenyl-benzo[*f*]chromene-3-

* Author to whom correspondence should be addressed.


SCHEME 1

SCHEME 2

-carbonitrile (*III*) was obtained. By fusion with ethyl cyanoacetate compound *I* afforded 1-amino-3-hydroxy-12*H*-phenyl-pyrido[2,3-*b*]benzo[*f*]chromene-2-carbonitrile (*IV*).

4-Amino-14*H*-phenyl-pyrimido[5',6':3,4]pyrido[5,6-*b*]benzo[*f*]chromene (*V*) was obtained by refluxing compound (*IV*) with formamide. When compound *IV* was treated with phosphorus oxychloride, 1-amino-3-chloro-12*H*-phenyl-pyrido[2,3-*b*]-benzo[*f*]chromene-2-carbonitrile (*VI*) was produced, but when treated with phosphorus pentasulfide in refluxing pyridine, 1-amino-2-cyano-12*H*-phenyl-pyrido[2,3-*b*]benzo[*f*]chromene-3-thiol (*VII*) was produced, which was identified by preparing it by the reaction of compound *V* with thiourea in refluxing ethanol followed by hydrolysis of thiouronium salt formed with sodium hydroxide and acidification with hydrochloric acid (Scheme 2).

SCHEME 3

When compound *VII* was allowed to react with halocompound, namely ethyl chloroacetate, phenacyl bromide and chloroacetanilide in refluxing ethanol in the presence of sodium acetate, the S-alkylation occurred, producing the corresponding S-alkylated derivatives *VIIa*–*VIIc* (Scheme 3). Compound *VI* reacted easily with

different amino compound. Reflux with aliphatic or aromatic amines produced the corresponding 1-amino-3-alkyl(aryl)amino-2-cyano-12*H*-phenyl-pyrido[2,3-*b*]benzo[*f*]chromenes (*IX*). Use of the hydrazine instead of amines resulted the 1,13-diamino-12*H*-phenyl-pyrazolo[4',4' : 2,3]pyrido[5,6-*b*]benzo[*f*]chromene (*X*).

EXPERIMENTAL

Melting points reported are uncorrected and determined on Fisher-Johnes melting point apparatus. Elemental analysis were performed on Perkin-Elmer 240°C elemental analyser. IR spectra were recorded on a Perkin-Elmer spectrometer using KBr wafer technique. ¹H NMR spectra were recorded by 90 MHz Varian NMR spectrometer in (CD₃)₂SO using tetramethylsilane as internal standard.

2-Amino-4*H*-phenyl-benzo[*f*]chromene-3-carbonitrile (*I*)

To a mixture of benzylidinemalononitrile (0.1 mol) and β -naphthol (0.1 mol) in ethanol (50 ml) few drops of piperidine were added. The mixture was refluxed for 1 h, the solid product was collected and recrystallized from acetic acid as white crystals, in 85% yield (25.3 g); m.p. 278°C (ref.⁸ 278°C).

1-Amino-12*H*-phenyl-pyrimido[4,5-*b*]benzo[*f*]chromene (*II*)

Compound *I* (0.01 mol) in 10 ml formamide was refluxed for 4 h. The reaction mixture was allowed to cool, the product was filtered off, and recrystallized from ethanol as white crystals in 70% yield (2.3 g); m.p. 215°C. For C₂₁H₁₅N₃O (325.4) calculated: 77.53% C, 4.65% H, 12.92% N; found: 77.88% C, 4.52% H, 13.15% N. IR ($\tilde{\nu}$, cm⁻¹): 3 400–3 300 (NH₂) and showed the disappearance of band characteristic of (C≡N); ¹H NMR (δ , (CD₃)₂SO): 7.0 to 8.2 m, 12 H (Ar-H); 6.1 s, 2 H (NH₂); 5.2 s, 1 H (CH pyran).

1-Diacetylamino-4*H*-phenyl-benzo[*f*]chromene-3-carbonitrile (*III*)

Compound *I* (0.01 mol) in 15 ml acetic anhydride was refluxed for 10 h and allowed to cool. The solid product was collected and recrystallized from acetic acid as white crystals. Yield 2.59 g (68%); m.p. 335°C. For C₂₄H₁₈N₂O₃ (382.4) calculated: 75.39% C, 4.71% H, 7.32% N; found: 75.58% C, 4.52% H, 7.62% N. IR ($\tilde{\nu}$, cm⁻¹): 2 220 (C≡N); 1 740, 1 780 (C=O); no band characteristic for NH₂ group.

1-Amino-3-hydroxy-12*H*-phenylpyrido[2,3-*b*]benzo[*f*]chromene (*IV*)

A mixture of compound *I* (0.01 mol) and ethyl cyanoacetate (0.01 mol) was fused at 180°C for 2 h. The reaction mixture was allowed to cool. The solid product was collected and recrystallized from acetic acid as pale brown crystals. Yield 2.37 g (65%); m.p. 275°C. For C₂₃H₁₅N₃O₂ (365.4) calculated: 75.61% C, 4.10% H, 11.50% N; found: 75.98% C, 3.84% H, 11.73% N. IR ($\tilde{\nu}$, cm⁻¹): 3 440, 3 340 and 3 190 (NH₂ and NH); 2 200 (C≡N) and 1 670 (C=O). ¹H NMR (δ , CDCl₃): 7.0–7.9 m, 11 H (Ar-H); 5.2 s, 1 H (pyran ring); 4.5 s, 2 H (NH₂).

4-Amino-14*H*-phenyl-pyrimido[5',6' : 3,4]pyrido[5,6-*b*]benzo[*f*]chromene (*V*)

Compound *IV* (0.01 mol) in 10 ml formamide was refluxed for 5 h, then allowed to cool. The

solid product was collected and recrystallized from ethanol as brown crystals. Yield 2.2 g (60%); m.p. 220°C. For $C_{24}H_{16}N_4O_2$ (392.4) calculated: 73.46% C, 4.08% H, 14.28% N; found: 73.65% C, 3.85% H, 14.00% N. IR ($\tilde{\nu}$, cm⁻¹): 3 500–3 100 (NH₂ and OH); no band characteristic for C≡N group.

1-Amino-3-chloro-12*H*-phenyl-pyrido[2,3-*b*]benzo[*f*]chromene-2-carbonitrile (*VI*)

A mixture of compound *IV* (0.01 mol) and phosphorus oxychloride (10 ml) was refluxed for 5 h, then allowed to cool and poured onto ice. The solid product was collected and recrystallized from ethanol. Yield 2.56 g (66%) of yellowish white crystals; m.p. 190°C. For $C_{23}H_{14}ClN_3O$ (383.8) calculated: 71.96% C, 3.65% H, 9.25% Cl, 10.95% N; found: 72.18% C, 3.47% H, 9.52% Cl, 11.12% N. IR ($\tilde{\nu}$, cm⁻¹): 3 440, 3 340 (NH₂); 2 190 (C≡N); 1 640 (C≡N).

1-Amino-2-cyano-12*H*-phenyl-pyrido[2,3-*b*]benzo[*f*]chromene-3-thiol (*VII*)

A) A mixture of compound *IV* (0.01 mol) and phosphorus pentasulfide (0.01 mol) in pyridine (30 ml) was refluxed for 5 h, allowed to cool, and poured into cold water. The solid product was collected and recrystallized from acetic acid as yellowish brown crystals. Yield 2.47 g (65%); m.p. 135–139°C.

B) A mixture of compound *VI* (0.01 mol) and thiourea (0.01 mol) in ethanol (30 ml) was refluxed for 5 h and allowed to cool. The solid product was collected, dissolved in NaOH solution (10% 100 ml) and then acidified with hydrochloric acid. The precipitated product was filtered off and recrystallized from acetic acid as yellowish brown crystals. Yield 2.66 g (70%); m.p. 138–139°C. For $C_{23}H_{15}N_3OS$ (381.5) calculated: 72.44% C, 3.93% H, 11.02% N, 8.39% S; found: 72.66% C, 4.18% H, 10.79% N, 8.39 S. IR ($\tilde{\nu}$, cm⁻¹): 3 440, 3 340 (NH₂); 2 190 (C≡N). ¹H NMR (δ , CDCl₃): 7.0–7.9 m, 11 H (Ar-H); 5.2 s, 1 H (pyran ring); 4.5 s, 1 H (SH); 4.9 s, 2 H (NH₂).

Reaction of Compound *VII* with α -Halocompounds

To a mixture of compound *VII* (0.01 mol) and α -halocompound (0.01 mol) in ethanol (30 ml), sodium acetate (2 g) was added, the mixture was refluxed for 3 h, then allowed to cool and poured into water. The solid product was collected and recrystallized from ethanol to give compounds *VIIIa*–*VIIIc*. The physical constants and spectral data of the products are presented in Table I.

Reaction of Compound *VI* with Aliphatic and Aromatic Amines

A mixture of compound *VI* (0.01 mol) and aliphatic or aromatic amine in ethanol (30 ml) was refluxed for 4 h, then allowed to cool. The solid product was collected and recrystallized from ethanol to give compounds *IXa*–*IXc*. Their physical constants and spectral data are represented in Table I.

1,13-Diamino-12*H*-phenyl-pyrazolo[4',5':2,3]pyrido[5,6-*b*]benzo[*f*]chromene (*X*)

A mixture of compound *VI* (0.01 mol) and hydrazine hydrate (0.01 mol) was refluxed in ethanol (30 ml) for 8 h, then allowed to cool. The solid product was filtered off and recrystallized from ethanol as yellowish brown crystals. Yield 2.46 g (65%); m.p. 260°C. For $C_{23}H_{17}N_5O$ (379.4) calculated: 72.82% C, 4.48% H, 18.46% N; found: 73.08% C, 4.71% H, 18.30% N. IR ($\tilde{\nu}$, cm⁻¹): 3 500–3 100 (2 NH₂, NH); no band characteristic of C≡N bond.

TABLE I
Physical and spectral data of compounds *VIIIA*–*IXc*

Compound R	M.p., °C Yield, %	Formula (M.w.)	Calculated/Found				Spectral data
			% C	% H	% N	% S	
<i>VIIIA</i> OC ₂ H ₅	259–261 78	C ₂₇ H ₂₁ N ₃ O ₃ S (467.6)	69.37 69.00	4.49 4.67	8.99 9.15	6.85 6.67	IR: 1740 (C=O), 2220 (C≡N), 3400–3200 (NH ₂); ¹ H NMR: 1.5 s, 3 H (CH ₃), 3.9 s, 2 H (CH ₂ of ester group), 4.1 s, 2 H (SCH ₂), 5.00 s, 1 H (CH of pyran ring), 6.7 s, 2 H (NH ₂), 7.2–8.0 m, 11 H (Ar–H)
<i>VIIIB</i>	238–240 84	C ₃₁ H ₂₁ N ₃ O ₂ S (499.6)	74.54 74.80	4.20 4.00	8.41 8.30	6.41 6.67	IR: 1700 (C=O), 2230 (C≡N), 3400–3200 (NH ₂)
<i>VIIIC</i> NHC ₆ H ₅	312 68	C ₃₁ H ₂₂ N ₄ O ₂ S (514.6)	72.37 72.09	4.28 4.52	10.89 11.12	6.22 5.98	IR: 3440–3300 (NH ₂ and NH), 2190 (C≡N)
<i>IXA</i> CH ₃	270 60	C ₂₄ H ₁₈ N ₄ O (378.4)	76.19 75.88	4.76 5.06	14.81 15.00	— —	IR: 3450–3300 (NH ₂ and NH), 2195 (C≡N)
<i>IXB</i> C ₆ H ₅	265 68	C ₂₉ H ₂₀ N ₄ O (440.5)	79.09 78.82	4.54 4.68	12.72 13.00	— —	IR: 3450–3280 (NH ₂ and NH), 2190 (C≡N); ¹ H NMR: 5.3 s, 1 H (CH of pyran ring), 6.8 s, 2 H (NH ₂), 7.1–8.00 m, 16 H (Ar–H), 8.3 s, 1 H (NH)
<i>IXC</i>	210 CH ₂ CH ₂ C ₆ H ₅	C ₃₁ H ₂₄ N ₄ O (468.6)	79.48 79.67	5.12 4.88	11.96 12.18	— —	IR: 3450–3200 (NH ₂ and NH), 2180 (C≡N)

Antibacterial Activity Evaluation

Compounds *I*–*X* were screened for their antibacterial activity in vitro against a variety of Gram positive and Gram negative bacteria (*Staphylococcus aureus*, *Staphylococcus citreus*, *Pseudomonas pyocyanea*, *Klebsiella pneumoniae*, *Bacillus cereus*, *Proteus vulgaris*) by the agar diffusion technique⁹. Compound *VI* was found to be the most potent member of the series. It exhibits a significant activity against both *Bacillus cereus* and *Staphylococcus citreus*. All the remaining compounds were found to be devoid of any antibacterial activity.

We are indebted to Dr Kh. Mohamed for running the biological studies.

REFERENCES

1. Varma R. S., Kabalka G. W.: *Heterocycles* **23**, 139 (1985).
2. Sakakibara T., Koezuka M., Sudoh R.: *Bull. Chem. Soc. Jpn.* **51**, 3095 (1978).
3. Rao T. S., Deshpande S., Mathur H. H., Trivedi G. K.: *Heterocycles* **22**, 1943 (1984).
4. Rene L., Royer R.: *Eur. J. Med. Chem. Ther.* **10**, 72 (1975).
5. Rene L., Blanco L., Royer R., Cavier R., Lemoine J.: *Eur. J. Med. Chem. Ther.* **12**, 385 (1977).
6. Lockhart I. M. in: *Chromans and Tocopherols* (G. P. Ellis and I. M. Lockhart, Eds), p. 189. Wiley, New York 1981.
7. Arora P. K., Bhaduri A. P.: *Indian J. Chem., B* **20**, 951 (1981).
8. Elagamey A. G. A., Sawllim S. Z., El-Taweel F. M. A., Elnagdy M. H.: *Collect. Czech. Chem. Commun.* **53**, 1534 (1988).
9. Verma R. S., Nobles W. L.: *J. Pharm. Sci.* **61**, 112 (1972).